.在直角坐标平面中,△ABC的两个顶点为 A(0,-1),B(0, 1)平面内两点G、M同时满足① , ②= = ③∥ (1)求顶点C的轨迹E的方程 (2)设P、Q、R、N都在曲线E上 ,定点F的坐标为(, 0) ,已知∥ , ∥且·= 0.求四边形PRQN面积S的最大值和最小值.
求函数的导数 (1)y=(x2-2x+3)e2x; (2)y=.
已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点(x0,y0)(x0≠0),求直线l的方程及切点坐标。
利用导数求和 (1)Sn=1+2x+3x2+…+nxn-1(x≠0,n∈N*) (2)Sn=C+2C+3C+…+nC,(n∈N*)
求函数的导数:
求证:任何一个实系数一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一个实数根.