已知函数的定义域为R,且满足以下条件:1对任意的,有;2对任意有;3(Ⅰ)求的值;(Ⅱ)判断 的单调性,并说明理由;(Ⅲ)若 且a,b,c成等比数列,求证:.
一种放射性元素,最初的质量为,按每年衰减.(1)求年后,这种放射性元素的质量与的函数关系式;(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).()
已知集合,集合.(1)若,求;(2)若,求的取值范围.
设函数(Ⅰ)设,,证明:在区间内存在唯一的零点;(Ⅱ)设,若对任意,有,求的取值范围
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费 (Ⅰ)设每月用电度,应交电费元,写出关于的函数;(Ⅱ)已知小王家第一季度缴费情况如下:
问:小王家第一季度共用了多少度电?
已知函数(Ⅰ)判断函数在上的单调性,并用定义加以证明;(Ⅱ)若对任意,总存在,使得成立,求实数的取值范围