某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止。设每位工人每次测试通过的概率依次为0.2,0.5,0.5。(1)求工人甲在这次上岗测试中参加考试次数的分布列;(2)若有4位工人参加这次测试,求至少有一人不能上岗的概率。
如图,已知点,,点为坐标原点,点在第二象限,且,记. (1)求的值;(2)若,求的面积.
数列中,,前项的和是,且,. (1)求数列的通项公式; (2)记,求.
已知函数,,且的解集为. (Ⅰ)求的值; (Ⅱ)若,且,求证:
已知曲线的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是ρ=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为. (Ⅰ)求点A,B,C,D的直角坐标; (Ⅱ)设P为上任意一点,求的取值范围.
如图,、是圆的半径,且,是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.