已知α=1690o,(1)把α表示成2kπ+β的形式(k∈Z,β∈).(2)求θ,使θ与α的终边相同,且θ∈(- 4π,- 2π).
已知f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值. (1)求a、b、c的值; (2)求f(x)在区间[-3,3]上的最大值和最小值.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (Ⅰ)求取出的两个球上标号为相同数字的概率; (Ⅱ)求取出的两个球上标号之积能被3整除的概率.
设有两个命题,p:关于x的不等式(a>0,且a≠1)的解集是{x|x<0};q:函数的定义域为R。如果为真命题,为假命题,求实数a的取值范围。
向量满足,. (1)求关于k的解析式; (2)请你分别探讨⊥和∥的可能性,若不可能,请说明理由,若可能,求出k的值; 求与夹角的最大值.
函数是定义在上的奇函数,且. (1)求实数的值.(2)用定义证明在上是增函数; (3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由)