(本小题满分12分)已知函数.(1)当时,求函数的单调区间和极值;(2)当时,若对任意,均有,求实数的取值范围;(3)若,对任意、,且,试比较与 的大小.
设函数.(Ⅰ)若曲线在点处与直线相切,求的值;(Ⅱ)求函数的单调区间与极值点.
已知椭圆的右焦点与抛物线的焦点重合,左端点为(1)求椭圆的方程;(2)过椭圆的右焦点且斜率为的直线被椭圆截的弦长。
已知数列的各项均为正数,且满足,. (1)推测的通项公式; (2)若,令,求数列的前项和
以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
(1)画出数据对应的散点图;(2)求线性回归方程;(3)据(2)的结果估计当房屋面积为时的销售价格.(提示:, ,, )
某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
若单科成绩85分以上(含85分),则该科成绩为优秀.(1)根据上表完成下面的2×2列联表(单位:人):
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?参考数据:假设有两个分类变量和,它们的值域分别为和,其样本频数列联表(称为列联表)为:
则随机变量,其中为样本容量;②独立检验随机变量的临界值参考表: