(本小题满分12分)已知函数.(1)当时,求函数的单调区间和极值;(2)当时,若对任意,均有,求实数的取值范围;(3)若,对任意、,且,试比较与 的大小.
本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分.设双曲线,是它实轴的两个端点,是其虚轴的一个端点.已知其一条渐近线的一个方向向量是,的面积是,为坐标原点,直线与双曲线C相交于、两点,且.(1)求双曲线的方程;(2)求点的轨迹方程,并指明是何种曲线.
对于,规定向量的“*”运算为:.若.解不等式.
(本题共3小题,每小题6分,满分18分)已知函数(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)设的反函数为,若关于的不等式R)有解,求的取值范围.
(本题共2小题,每小题8分,满分16分)数列 的前项和为,数列的前项的和为,为等差数列且各项均为正数,,,.(1)求证:数列是等比数列;(2)若,,成等比数列,求.
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为210吨. (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?