已知定点及椭圆,过点的动直线与椭圆相交于两点.(Ⅰ)若线段中点的横坐标是,求直线的方程;(Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
如图,菱形的边长为2,为正三角形,现将沿向上折起,折起后的点记为,且,连接.(1)若为的中点,证明:平面;(2)求三棱锥的体积.
某地最近十年粮食需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程;(2)利用(1)中所求出的直线方程预测该地第6年的粮食需求量.
已知圆的方程为,点是坐标原点.直线与圆交于两点.(1)求的取值范围;(2)过作圆的弦,求最小弦长?
已知条件,条件,若是的充分条件,求实数的取值范围.
函数,其中为实常数。(1)讨论的单调性;(2)不等式在上恒成立,求实数的取值范围;(3)若,设,。是否存在实常数,既使又使对一切恒成立?若存在,试找出的一个值,并证明;若不存在,说明理由.