已知坐标平面内O为坐标原点,P是线段OM上一个动点.当取最小值时,求的坐标,并求的值
(本小题满分12分)如图,在底面为直角梯形的四棱锥P—ABCD中,,平面(1)求证:平面PAC;(2) 求二面角的大小.
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.(1)求甲,乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工的概率;(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.
(本小题满分12分)在△ABC中,内角A,B,C所对边长分别为,,,(Ⅰ)求的最大值及的取值范围;(Ⅱ)求函数的最值.
(本小题满分12分)已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,求双曲线的离心率;
(本小题满分14分)已知函数(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.