已知,设.(1)求函数的最小正周期,并写出的减区间;(2)当时,求函数的最大值及最小值
(本小题满分14分)已知数列满足,().(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足(),证明:数列是等差数列;(Ⅲ)证明:().
如图,有一块边长为1(百米)的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角始终为(其中点P,Q分别在边BC,CD上),设.(Ⅰ)用t表示出PQ的长度,并探求的周长l是否为定值;(Ⅱ)问探照灯照射在正方形ABCD内部区域阴影部分的面积S最大为多少(平方百米)?
我炮兵阵地位于地面A处,两观察所分别位于地面点C和D处,已知CD=6,∠ACD=45°,∠ADC=75°, 目标出现于地面点B处时,测得∠BCD=30°,∠BDC=15°(如图),求炮兵阵地到目标的距离.
(本小题满分13分)已知两个集合,命题:实数为小于6的正整数,命题:A是B成立的必要不充分条件.若命题是真命题,求实数的值.
(本小题满分13分) 已知等差数列满足:,,的前n项和为.(Ⅰ)求通项公式及前n项和;(Ⅱ)令=(nN*),求数列的前n项和.