设一物体从初速度为1时开始做直线运动,已知在任意时刻t时的加速度为s+1,将位移表示为时间t的函数式.
已知数列{an}的前n项和Sn满足, (1)求数列{an}的通项公式; (2)求证:数列{an}中的任意三项不可能成等差数列; (3)设,Tn为{bn}的前n项和,求证.
数列{}满足,, (1)求证:成等比数列; (2)若对一切N*及恒成立,求实数t的取值范围.
已知函数(、为常数). (Ⅰ)若,解不等式; (Ⅱ)若,当时,恒成立,求的取值范围.
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,截面DAN交PC于M. (1)求PB与平面ABCD所成角的大小; (2)求证:PB⊥平面ADMN.
在正方体中,G是C1D1的中点,H是A1B1的中点 (1)求异面直线AH与BC1所成角的余弦值; (2)求证:BC1∥平面B1DG.