(1)当时,求椭圆的标准方程及其右准线的方程;(2)用表示P点的坐标;(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
已知一个几何体的三视图如图所示. (1)求此几何体的表面积; (2)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.
已知圆:内有一点,过点作直线交圆于,两点. (1)当经过圆心时,求直线的方程; (2)当弦被点平分时,写出直线的方程.[
已知,. (1)求和; (2)定义且,求和.
已知函数在区间和上单调递增,在上单调递减,其图象与轴交于三点,其中点的坐标为. (1)求的值; (2)求的取值范围; (3)求的取值范围.
知椭圆的两焦点、,离心率为,直线:与椭圆交于两点,点在轴上的射影为点. (1)求椭圆的标准方程; (2)求直线的方程,使的面积最大,并求出这个最大值.