如图,一个圆锥的底面半径为2cm,高为 6cm,其中有一个高为 cm的内接圆柱. (1)试用表示圆柱的侧面积;(2)当为何值时,圆柱的侧面积最大.
在平面直角坐标系xOy中,直线m的参数方程为(t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ=8cosθ.若直线m与曲线C交于A、B两点,求线段AB的长.
已知M=,N=,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.
如图,已知AB为圆O的直径,BC切圆O于点B,AC交圆O于点P,E为线段BC的中点.求证:OP⊥PE.
设函数f (x)的定义域为M,具有性质P:对任意x∈M,都有f (x)+f (x+2)≤2f (x+1).(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;(2)若M为自然数集N,并满足对任意x∈M,都有f (x)∈N. 记d(x)=f (x+1)-f (x).(ⅰ) 求证:对任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;(ⅱ) 求证:存在整数0≤c≤d(1)及无穷多个正整数n,满足d(n)=c.
设非常数数列{an}满足,n∈N*,其中常数α,β均为非零实数,且 α+β≠0.(1)证明:数列{an}为等差数列的充要条件是α+2β=0;(2)已知α=1,β=, a1=1,a2=,求证:数列{| an+1-an-1|} (n∈N*,n≥2)与数列{n+} (n∈N*)中没有相同数值的项.