(1) 当x=2时,求证:BD⊥EG ;(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;(3) 当 f(x)取得最大值时,求二面角D-BF-C的余弦值.
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.(1)求cos∠CBE的值;(2)求AE。
求
.本小题满分14分)已知定义在实数集R上的偶函数的最小值为3,且当时,,其中e是自然对数的底数。(1)求函数的解析式;(2)若实数使得存在,只要,就有求正整数n的最大值。
. 已知定圆圆心为A;动圆M过点且与圆A相切,圆心M 的坐标为且,它的轨迹记为C。(1)求曲线C的方程;(2)过一点N(1,0)作两条互相垂直的直线与曲线C分别交于点P和Q,试问这两条直线能否使得向量互相垂直?若存在,求出点P,Q的横坐标,若不存在,请说明理由。
.(本小题满分12分)如图所示,有公共边的两正方形ABB1A1与BCC1B1的边AB、BC均在平面α内,且,M是BC的中点,点N在C1C上。(1)试确定点N的位置,使(2)当时,求二面角M—AB1—N的余弦值。