(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线:与椭圆交于不同的两点(不是左、右顶点),且以为直径的圆经过椭圆的右顶点.求证:直线过定点,并求出定点的坐标.
已知函数,若存在,且,使得. (Ⅰ)求实数的取值集合; (Ⅱ)若,且函数的值域为,求实数的取值范围.
若已知直线在两坐标轴上的截距相等,且到直线的距离为,求直线的方程.
如图,四面体中,是的中点,和均为等边三角形,,. (Ⅰ)求证:平面; (Ⅱ)求点到平面的距离.
设是定义在上的偶函数,当时,单调递减,若成立,求的取值范围.
解方程: