某养殖厂需定期购买饲料,已知该厂每天需要饲料200公斤,每公斤饲料的价格为1.8元,饲料的保管与其他费用为平均每公斤每天0.03元,购买饲料每次支付运费300元.(Ⅰ)求该厂多少天购买一次饲料才能使平均每天支付的总费用最小;(Ⅱ)若提供饲料的公司规定,当一次购买饲料不少5吨时其价格可享受八五折优惠(即原价的85%).问该厂是否考虑利用此优惠条件,请说明理由.
已知函数(,,)的图像与轴的交点 为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和 (1)求函数的解析式; (2)若锐角满足,求的值.
已知. (1)求的极值,并证明:若有; (2)设,且,,证明:, 若,由上述结论猜想一个一般性结论(不需要证明); (3)证明:若,则.
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上. (1)求抛物线和椭圆的标准方程; (2)过点的直线交抛物线于两不同点,交轴于点,已知,求的值; (3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制 成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千 克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A 中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为. (1)证明:是一个常数; (2)求与的关系式; (3)求的表达式.
如图,在各棱长均为的三棱柱中,侧面底面,. (1)求侧棱与平面所成角的正弦值的大小; (2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.