某校高二年级有学生1000人,在某次数学考试中,为研究学生的考试情况,需从中抽取40名学生的成绩,(1)问采用何种抽样方法更合适?(2)根据所抽取的40名学生成绩,分组在,,的频率分布直方图中对应的小矩形的高分别是,问所取的40名学生的成绩不低于分的共有多少人?(3)在(2)所求的成绩不低于分的学生中任取2人为一组(不分先后),求至少有1人的成绩在内的概率.
设函数; (Ⅰ)求证:函数在上单调递增; (Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且的最大值为. (Ⅰ)求椭圆E的方程; (Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=. (Ⅰ)若M为PA中点,求证:AC∥平面MDE; (Ⅱ)求平面PAD与PBC所成锐二面角的大小.
已知函数满足,当时;当时. (Ⅰ)求函数在(-1,1)上的单调区间; (Ⅱ)若,求函数在上的零点个数.
在中,分别为角的对边,的面积S满足 (Ⅰ)求角A的值; (Ⅱ)若,设角B的大小为x,用x表示c,并求c的取值范围.