已知数列的前n项和为,对任意的,点,均在函数的图像上.(Ⅰ)求数列的通项公式; (Ⅱ)记,求使成立的的最大值.
(本小题14分)在平面直角坐标系中,曲线C1的参数方程为(a>b>0,为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点对应的参数.与曲线C2交于点. (1)求曲线C1,C2的直角坐标方程; (2),是曲线C1上的两点,求的值.
(本小题14分)在极坐标系中,已知到直线l:的距离为3. (1)求m的值. (2)设P是直线l上的动点,点Q在线段OP上,满足,求点Q的轨迹方程.
如图,已知抛物线的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m. (l)求抛物线所对应的二次函数的表达式; (2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围; (3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.
阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半. 如图(1):在梯形ABCD中:AD∥BC, ∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC) 材料二:经过三角形一边的中点与另一边平行的直线必平分第三边 如图(2):在△ABC中:∵E是AB的中点,EF∥BC ∴F是AC的中点 请你运用所学知识,结合上述材料,解答下列问题. 如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°. (1)求证:EF=AC; (2)若OD=,OC=5,求MN的长.
已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E. (1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由; (2)如图2,过点E作⊙O的切线,交AC的延长线于点F. ①若CF=CD时,求sin∠CAB的值; ②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)