已知圆心为的圆经过点和,且圆心在直线上,求圆心为的圆的标准方程.
(本题满分15分) 如图,椭圆C: x2+3y2=3b2(b>0). (Ⅰ) 求椭圆C的离心率; (Ⅱ) 若b=1,A,B是椭圆C上两点,且| AB | =,求△AOB面积的最大值.
(本题满分15分)四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足==λ∈(0,1). (Ⅰ) 求证:FG∥平面PDC; (Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为.
(本题满分14分) 设等差数列{an}的首项a1为a,前n项和为Sn. (Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式; (Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 在△ABC中,角A,B,C所对的边分别为a,b,c,已知 tan (A+B)=2. (Ⅰ) 求sin C的值; (Ⅱ) 当a=1,c=时,求b的值.
已知函数=,. (1)求函数在区间上的值域T; (2)是否存在实数,对任意给定的集合T中的元素t,在区间上总存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由; (3