已知双曲线的中心在坐标原点,对称轴为坐标轴,点是它的一个焦点,并且离心率为.(Ⅰ)求双曲线C的方程;(Ⅱ)已知点,设是双曲线上的点,是点关于原点的对称点,求的取值范围.
(本小题满分9分)如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE: (Ⅱ)若二面角C-AE-D的大小为600C,求的值。
已知数列满足 (1)求数列的通项公式;(2)若数列满足,求数列的通项公式;(3)若,求数列的前n项和
已知的内角、、的对边分别为、、,,且 (1)求角;(2)若向量与共线,求、的值.
(本题10分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示. (Ⅰ)求证:BC⊥平面ACD; (Ⅱ)求二面角A-CD-M的余弦值.
(本题8分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形, PA=AB=2,M, N分别为PA, BC的中点. (Ⅰ)证明:MN∥平面PCD; (Ⅱ)求MN与平面PAC所成角的正切值.