在极坐标系中,已知圆C的圆心坐标为(3,),半径为1,点Q在圆C上运动,O为极点。(1)求圆C的极坐标方程;(2)若点在直线OQ上运动,且满足,求动点P的轨迹方程。
是边长为的等边三角形,,,过点作交边于点,交的延长线于点. (1)当时,设,用向量表示; (2)当为何值时,取得最大值,并求出最大值.
如图,已知锐角,钝角的始边都是轴的非负半轴,终边分别与单位圆交于点 (1)求; (2)设函数,求的值域.
如图,平行四边形(按逆时针顺序排列),边所在直线的方程分别是,且对角线和的交点为 (1)求点的坐标 (2)求边所在直线的方程
如图,正方体的棱长为2,E,F,G分别是,的中点. (1)求证:FG//平面; (2)求FG与平面所成的角的正切值.
已知数列及,,. (Ⅰ)求的值,并求数列的通项公式; (Ⅱ)设,求数列的前项和; (Ⅲ)若对一切正整数恒成立,求实数的取值范围.