在极坐标系中,已知圆C的圆心坐标为(3,),半径为1,点Q在圆C上运动,O为极点。(1)求圆C的极坐标方程;(2)若点在直线OQ上运动,且满足,求动点P的轨迹方程。
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(1)求出甲、乙所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).
某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.
已知,直线, 相交于点,交轴于点,交轴于点.(1)证明:;(2)用表示四边形的面积,并求出的最大值;(3)设, 求的单调区间.
如图,直三棱柱中,已知,, 是中点.(1)求证:平面; (2)当点在上什么位置时,会使得平面?并证明你的结论.
已知圆C的方程是,直线的方程为,求:当为何值时(1)直线平分圆;(2)直线与圆相切;(3)直线与圆有两个公共点.