试写出三个点使得它们分别满足下列条件(答案不唯一):三点连线平行于x轴;三点所在平面平行于xoy坐标平面;在空间任取两点,类比直线方程的两点式写出所在直线方程
由0,1,2,3,4,5这六个数字. (1)能组成多少个无重复数字的四位数? (2)能组成多少个无重复数字的四位偶数? (3)能组成多少个无重复数字且被25个整除的四位数? (4)组成无重复数字的四位数中比4032大的数有多少个?
用秦九韶算法求多项式当时的值。
把“五进制”数转化为“十进制”数,再把它转化为“八进制”数。
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点,且(为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:()相切于,且与轨迹E只有一个公共点,当为何值时,取得最大值?并求最大值.
以知椭圆的两个焦点分别为,过点的直线与椭圆相交与两点,且. (I)求椭圆的离心率; (II)求直线AB的斜率; (Ⅲ)设点C与点A关于坐标原点对称,直线上有一点在 的外接圆上,求的值.