(本小题满分12分)某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表: (1)根据上面频率分布表,求①,②,③,④处的数值(2)在所给的坐标系中画出区间[80,150]上的频率分布直方图;(3)从整体中任意抽取3个个体,成绩落在[105,120]中的个体数目为ξ ,求ξ的分布列和数学期望.
(本小题满分10分)已知,,(1)若,求; (2)若与的夹角为,求;(3)若与垂直,求与的夹角。
(本小题满分14分)设上的两点,已知向量,,若且椭圆的离心率短轴长为2,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过椭圆的焦点(0,c),(c为半焦距),求直线的斜率的值;(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分12分)已知函数(I)求为何值时,上取得最大值;(Ⅱ)设是单调递增函数,求的取值范围.
.(本小题满分12分)已知数列的各项均是正数,其前项和为,满足,其中为正常数,且(Ⅰ)求数列的通项公式;(Ⅱ)设,数列的前项和为,求证:
( (本小题满分12分) 如图,在直三棱柱ABC—A1B1C1中,.(Ⅰ)若D为AA1中点,求证:平面B1CD平面B1C1D;(Ⅱ)若二面角B1—DC—C1的大小为60°,求AD的长.