(本小题满分16分)已知数列是以为公差的等差数列,数列是以为公比的等比数列.(Ⅰ)若数列的前项和为,且,,求整数的值;(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项,使得恰好可以表示为该数列中连续项的和?请说明理由;(Ⅲ)若(其中,且()是()的约数),求证:数列中每一项都是数列中的项.
已知函数 (I)求的解集; (II)设a>0,g(x)=ax2-2x+5, 若对任意实数,均有恒成立,求a的取值范围。
已知函数. (Ⅰ)求函数的最小正周期和值域; (Ⅱ)若为第二象限角,且,求的值.
题文已知函数. (1)求函数的单调递减区间; (2)若不等式对一切恒成立,求的取值范围.
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
已知在全部105人中随机抽取一人为优秀的概率为. (1)请完成上面的列联表; (2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10或11号的概率. 参考公式和数据:
(1)解不等式; (2)如果关于的不等式的解集不是空集,求实数的取值范围.