若,求:(1)在之间的平均速度(设);(2)在时的瞬时速度.
(本小题满分12分)已知定义域为R的函数是奇函数.(Ⅰ)求a的值,并指出函数的单调性(不必说明单调性理由);(Ⅱ)若对任意的,不等式恒成立,求的取值范围.
已知函数,(1)当t=1时,求曲线处的切线方程;(2)当t≠0时,求的单调区间;(3)证明:对任意的在区间(0,1)内均存在零点。
已知向量,(1)求的最大值和最小值;(2)若,求k的取值范围。
在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且,(1)若c2=a2+b2—ab,求角A、B、C的大小;(2)已知向量的取值范围。
已知等差数列{an}中,a3=-4,a1+a10=2,(1)求数列{an}的通项公式;(2)若数列{bn}满足an=log3bn,设Tn=b1·b2……bn,当n为何值时,Tn>1。