设的极小值为,其导函数的图像经过点,如图所示,(1)求的解析式;(2)若对都有恒成立,求实数的取值范围。
如图,圆内有一点P(—1,2),AB为过点P的弦。(1)当弦AB的倾斜角为135°时,求AB所在的直线方程及|AB|;(2)当弦AB被点P平分时,写出直线AB的方程。
如图,在长方体中,点在棱的延长线上,且. (Ⅰ)求证://平面 ; (Ⅱ)求证:平面平面;
【改编】已知圆:(1)平面上有两点,求过点两点的直线被圆截得的弦长;(2)已知过点的直线平分圆的周长,是直线上的动点,求的最大值.(3) 若是轴上的动点,分别切圆于两点.试问:直线是否恒过定点?如是,求出定点坐标,如不是,说明理由.
【原创】如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD ="2AE" ="2AB" =" 4CF=" 4,将四边形EFCD沿EF折起使AE=AD.(1)求证:AF∥平面CBD;(2)求几何体ADE-BCF的体积.
已知:矩形的两条对角线相交于点,边所在直线的方程为: ,点在边所在直线上.(1)求矩形外接圆的方程。(2)是圆的内接三角形,其重心的坐标是,求直线的方程 .