袋中有红、白两种颜色的球,作无放回的抽样试验,连抽3次,每次抽一球。设=“第i次抽到红球”,(="1," 2, 3)。试用及表示下列事件:(1)前2次都抽到红球;(2)至少有一次抽到红球;(3)到第2次才抽到白球;(3)恰有两次抽到红球;(4)后两次中至少有一次抽到红球.
.(本小题满分12分) 在公差不为零的等差数列和等比数列中,已知,; (Ⅰ)的公差和的公比;(Ⅱ)设,求数列的前项和
(本小题满分12分) 四棱锥的底面与四个侧面的形状和大小如图所示。(Ⅰ)写出四棱锥中四对线面垂直关系(不要求证明)(Ⅱ)在四棱锥中,若为的中点,求证:平面(Ⅲ)求四棱锥值。
(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185)得到的频率分布直方图如图所示。(Ⅰ)求第3、4、5组的频率;(Ⅱ)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?
(本小题满分12分) 若函数的图象与直线相切,相邻切点之间的距离为。(Ⅰ)求和的值;(Ⅱ)若点是图象的对称中心,且,求点的坐标。
(13分)一个同心圆形花坛,分为两部分,中间小圆部分种植绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.⑴ 如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法?⑵ 如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?