已知数列满足,,,其中是给定的实数,是正整数,试求的值,使得的值最小.
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
在数列中,,,对任意成立,令,且是等比数列.(1)求实数的值;(2)求数列的通项公式;(3)求证:.
如图,已知矩形中,,,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上.(1)求证:;(2)求证:平面平面;(3)求二面角的余弦值.
在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.
(1)请完成上面的列联表;(2)根据列联表的数据,能否有的把握认为成绩与班级有关系?(3)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用表示抽得甲班的学生人数,求的分布列.
设向量,,.(1)若,求的值;(2)设函数,求的最大、最小值.