已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S=an(Sn-).(1)求Sn的表达式;(2)设bn=,求{bn}的前n项和Tn.
(文科)已知椭圆过点和点.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,且,求直线的方程.[来
(文科)已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
(理科)已知动点在直线上,过点分别作曲线的切线,切点为、, 求证:直线恒过一定点,并求出该定点的坐标?
(文科)已知直线与双曲线交于、点。(1)求的取值范围;(2)若以为直径的圆过坐标原点,求实数的值;(3)是否存在这样的实数,使、两点关于直线对称?若存在,求出值;若不存在,说明理由。
(理科)已知椭圆C:的离心率为,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.