已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2 009]上的所有x的个数.
已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个. (1)求函数f(x)的表达式; (2)若数列{an}满足a1=,an+1=f(an),bn=-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式; (3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
解关于的不等式:
一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
已知△的内角所对的边分别为且. (1) 若, 求的值; (2) 若△的面积求的值.
设等比数列的公比,前项和为。已知求的通项公式