已知sin(+k)=-2cos(+k) (k∈Z).求:(1);(2)sin2+cos2.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为. (1)求直线与圆相切的概率; (2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
在边长为2的正方体中,E 是BC的中点,F 是的中点 (Ⅰ)求证:CF ∥平面 (Ⅱ)求二面角的平面角的余弦值。
统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在 (1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在的应抽取多少人 (2)根据频率分布直方图估计样本数据的中位数 (3)根据频率分布直方图估计样本数据的平均数
已知函数的图象在点(1,)处的切线方程为。 (1)用表示出; (2)若在[1,+∞)上恒成立,求的取值范围.
某少数民族的刺绣有着悠久的历史,如下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形. (1)求出的值; (2)利用合情推理的“归纳推理思想”,归纳出与之间的关系式,并根据你得到的关系式求出的表达式; (3)求的值。