某观测站C在A城的南偏西20°的方向.由A城出发的一条公路,走向是南偏东40°,在C处测得公路上B处有一人距C为31千米正沿公路向A城走去,走了20千米后到达D处,此时CD间的距离为21千米,问这人还要走多少千米才能到达A城?
先化简,再求值:,其中x=-2.
如图抛物线与x轴交于A、B两点,与y轴交于点C(0.).且对称抽x=l. (1)求出抛物线的解析式及A、B两点的坐标; (2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1); (3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).
某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元. (1)每台电脑机箱、液晶显示器的进价各是多少元? (2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道 时,我们可以这样做: (1)观察并猜想:=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)=(1+0)×1+(1+1)×2+(l+2)×3 =1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3)=(1+0)×1+(1+1)×2+(l+2)×3+ ___________ ="1+0×1+2+1×2+3+2×3+" ___________ =(1+2+3+4)+(___________) … (2)归纳结论:=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n =1+0×1+2+1×2+3+2×3+…+n+(n-1)×n =(___________)+[ ___________] =" ___________+" ___________ =×___________ (3 )实践应用: 通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_________。
如图,正比例函数与反比例函数相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且.过点A的一次函数与反比例函数的图象交于另一点C,与x轴交于点E(5,0). (1)求正比例函数、反比例函数和一次函数的解析式; (2)结合图象,求出当时的取值范围.