已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.
某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为 4 5 ,第二、第三门课程取得优秀成绩的概率分别为 p . q p > q ,且不同课程是否取得优秀成绩相互独立。记 ξ 为该生取得优秀成绩的课程数,其分布列为
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率; (Ⅱ)求 p , q 的值; (Ⅲ)求数学期望 E ξ 。
已知 m 是非零实数,抛物线 C : y 2 = 2 p s ( p > 0 ) 的焦点 F 在直线 l : x - m y - m 2 2 = 0 上. (I)若 m = 2 ,求抛物线 C 的方程 (II)设直线 l 与抛物线 C 交于 A 、 B , ∆ A A 2 F , ∆ B B 1 F ,的重心分别为 G , H .求证:对任意非零实数 m ,抛物线 C 的准线与 x 轴的焦点在以线段 G H 为直径的圆外.
已知函数 f x = x - a 2 a - b a , b ∈ R , a < b 。 (I)当 a = 1 , b = 2 时,求曲线 y = f x 在点 2 , f x 处的切线方程。 (II)设 x 1 , x 2 是 f x 的两个极值点, x 3 是 f x 的一个零点,且 x 3 ≠ x 1 , x 3 ≠ x 2 ,证明:存在实数 x 4 ,使得 x 1 , x 2 , x 3 , x 4 按某种顺序排列后的等差数列,并求 x 4 .
如图,在平行四边形 A B C D 中, A B = 2 B C , ∠ A B C = 120 ° 。 E 为线段 A B 的中点,将 △ A D E 沿直线 D E 翻折成 △ A ` D E ,使平面 A ` D E ⊥ 平面 B C D , F 为线段 A ` C 的中点.
(Ⅰ)求证: B F / / 平面 A ` D E ; (Ⅱ)设 M 为线段 D E 的中点,求直线 F M 与平面 A ` D E 所成角的余弦值。
设 a 1 , d 为实数,首项为 a 1 ,公差为 d 的等差数列 { a n } 的前 n 项和为 S n ,满足 S 5 S 6 + 15 = 0 。 (Ⅰ)若 S 5 = 5 ,求 S 5 及 a 1 ; (Ⅱ)求 d 的取值范围。