已知A(x,2,3)、B(5,4,7),且|AB|=6,求x的值.
已知双曲线W:的左、右焦点分别为、,点,右顶点是M,且,.(Ⅰ)求双曲线的方程;(Ⅱ)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.
已知等差数列(N+)中,,,. (Ⅰ)求数列的通项公式;(Ⅱ)若将数列的项重新组合,得到新数列,具体方法如下: ,,,,…,依此类推,第项由相应的中项的和组成,求数列的前项和.
(本小题满分12分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(Ⅰ)证明:⊥平面;(Ⅱ)求平面与平面所成角的余弦值;
第七届城市运动会2011年10月16日在江西南昌举行,为了搞好接待工作,运动会组委会在某大学招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“ 非高个子”,且只有“女高个子”才担任“礼仪小姐”。(I)如果用分层抽样的方法从“高个子”中和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(II)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
△ABC中,角A、B、C对边分别是a、b、c,满足.(Ⅰ)求角A的大小;(Ⅱ)求的最大值,并求取得最大值时角B、C的大小.