已知直线l1:x+y-1=0,现将直线l1向上平移到直线l2的位置,若l2,l1和两坐标轴围成的梯形的面积是4,求l2的方程.
(本小题满分14分)已知函数.(1)设,且,求θ的值;(2)在△ABC中,AB=1,,且△ABC的面积为,求sinA+sinB的值.
(本小题满分14分)如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证:(1)PA⊥平面EBO;(2)FG∥平面EBO.
(本小题满分10分)选修4-5:不等式选讲设函数,其中.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.
(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同。直线的极坐标方程为:,点,参数.(1)求点轨迹的直角坐标方程;(2)求点到直线距离的最大值.
(本小题满分10分)选修4-1:几何证明选讲已知中,,是外接圆劣弧上的点(不与点重合),延长至。(1)求证:的延长线平分;(2)若,中边上的高为,求外接圆的面积。