(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?
已知函数,的最大值为2. (1)求函数在上的值域; (2)已知外接圆半径,,角所对的边分别是,求的值.
已知函数。 (1)当a=3时,求不等式的解集; (2)若对恒成立,求实数a的取值范围。
在直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π)。以原点为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为 ρcos2θ=4sinθ。 (1)求直线l与曲线C的平面直角坐标方程; (2)设直线l与曲线C交于不同的两点A、B,若,求α的值。
已知AB是圆O的直径,C为圆O上一点,CD⊥AB于点D,弦BE与CD、AC分别交于点M、N,且MN=MC (1)求证:MN=MB; (2)求证:OC⊥MN。
设函数,. (1)若函数在上单调递增,求实数的取值范围; (2)求函数的极值点. (3)设为函数的极小值点,的图象与轴交于两点,且,中点为, 求证:.