六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.
已知倾斜角为的直线过点和点,点在第一象限,。(1)求点的坐标;(2)若直线与双曲线相交于两点,且线段的中点坐标为,求的值;(3)对于平面上任一点,当点在线段上运动时,称的最小值为与线段的距离。已知在轴上运动,写出点到线段的距离关于的函数关系式。
已知函数,其中p>0,p+q>1。对于数列,设它的前n项之和为,且。(1)求数列的通项公式;(2)证明:(3)证明:点,,,,共线
在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x)。某公司每月最多生产100台报警系统装置,生产x台的收入函数为(单位:元),其成本函数为(单位:元),利润是收入与成本之差。(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相等的最大值?(3)你认为本题中边际利润函数MP(x)取最大值的实际意义是什么?
如图,四棱锥的底面是边长为1的正方形,底面,。(1)求证:;(2)设棱的中点为,求异面直线与所成角的大小;
已知、是实系数一元二次方程的两个根.问是否存在这样的实数a,使得等式总不能成立?若存在,找出所有这样的a;若不存在,说明理由.