已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点A(m,-3)到焦点F的距离为5,求m的值,并写出此抛物线的方程.
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题个数记为,求随机变量的分布列和期望.
(本小题满分10分)已知向量,.(Ⅰ)若,求的值; (Ⅱ)设,求的取值范围.
(本小题满分13分)如图6所示,在直角坐标平面上的矩形中,,,点,满足,,点是关于原点的对称点,直线与相交于点.(Ⅰ)求点的轨迹方程;(Ⅱ)若过点的直线与点的轨迹相交于,两点,求的面积的最大值.图6
(本小题满分13分)已知首项不为零的数列的前项和为,若对任意的,,都有.(Ⅰ)判断数列是否为等差数列,并证明你的结论;(Ⅱ)若数列的第项是数列的第项,且,,求数列的前项和.
(本小题满分13分)在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,,,每个工作台上有若干名工人.现要在与之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.(Ⅰ)若每个工作台上只有一名工人,试确定供应站的位置;(Ⅱ)设工作台从左到右的人数依次为,,,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.图5