写出下列命题的“否定”,并判断其真假.(1)p:x∈R,x2-x+≥0;(2)q:所有的正方形都是矩形;(3)r:x∈R,x2+2x+2≤0;(4)s:至少有一个实数x,使x3+1=0.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.(I)求证:CD⊥平面PAC;(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置,并证明,若不存在,请说明理由.
已知角A,B,C是△ABC三边a,b,c所对的角,,,,且.(I)若△ABC的面积S=,求b+c的值;(II)求b+c的取值范围.
已知在等差数列{}中,=3,前7项和=28。(I)求数列{}的公差d;(II)若数列{}为等比数列,且,求数列}的前n项和.
已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.(I)求椭圆C的方程;(II)如图,动直线:与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且,,四边形面积S的求最大值.
已知函数.(I)求f(x)的单调区间及极值;(II)若关于x的不等式恒成立,求实数a的集合.