为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.
如图所示,已知ABCD是正方形,PD⊥平面ABCD, PD=AD=2. (1)求异面直线PC与BD所成的角; (2)在线段PB上是否存在一点E,使PC⊥平面ADE? 若存在,确定E点的位置;若不存在,说明理由.
.(12分) 已知函数 (Ⅰ)求函数f(x)的最小正周期和最小值; (Ⅱ)在给出的直角坐标系中, 画出函数上的图象.
(本小题满分12分) 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D. (I)求AB的长度; (Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分12分)已知函数 (I)当的单调区间和极值; (II)若函数在[1,4]上是减函数,求实数a的取值范围.
已知函数. (Ⅰ)若函数在区间上有最小值,求的值. (Ⅱ)若同时满足下列条件①函数在区间上单调;②存在区间使得在上的值域也为;则称为区间上的闭函数,试判断函数是否为区间上的闭函数?若是求出实数的取值范围,不是说明理由.