为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,求出的斜率范围,若不存在,说明理由。
平行四边形ABCD中,AB=2,AD=,且,以BD为折线,把折起,使平面,连AC。(1)求异面直线AD与BC所成角大小;(2)求二面角B-AC-D平面角的大小;(3)求四面体ABCD外接球的体积。
已知数列中,对一切自然数,都有且首项为,若。(1)用表示,并求数列的通项公式;(2)若表示数列的前项之和,则。
在△ABC中,分别为角A、B、C的对边,,="3," △ABC的面积为6,D为△ABC内任一点,点D到三边距离之和为d。⑴求角A的正弦值; ⑵求边b、c; ⑶求d的取值范围
已知函数(为常数,).(Ⅰ)当时,求函数在处的切线方程;(Ⅱ)当在处取得极值时,若关于的方程在[0,2]上恰有两个不相等的实数根,求实数的取值范围;(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.