在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)
P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.
如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=PN,试建立适当的坐标系,并求动点P的轨迹方程.
如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.
已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R). (1)求直线l1、l2的方程; (2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C. ①当a=4,b=-2时,求圆C的方程; ②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.
在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C. (1)求实数b的取值范围; (2)求圆C的方程; (3)圆C是否经过定点(与b的取值无关)?证明你的结论.