从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下:(单位:分)[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例;(4)估计成绩在85分以下的学生比例.
已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称. (1)求圆C的方程; (2)设Q为圆C上的一个动点,求·的最小值; (3)过点P作两条相异直线分别与圆C相交于A、B,且直线PA与直线PB的倾斜角互补.O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=,BB1=2. (1)求证:C1B⊥平面ABC; (2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1.
已知正项数列{an}中,a1=6,且an+1=an+1;数列{bn}中,点Bn(n,bn)在过点(0,1)且以(1,2)为方向向量的直线l上. (1)求数列{an},{bn}的通项公式; (2)若f(n)=问是否存在k∈N*,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,请说明理由.
已知定义在区间[-,]上的函数y=f(x)图像关于直线x=对称,当x≥时,f(x)=-sinx. (1)作出y=f(x)的图像; (2)求y=f(x)的解析式.
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n. (1)设bn=an-1,求证:数列{bn}是等比数列; (2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.