从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下:(单位:分)[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例;(4)估计成绩在85分以下的学生比例.
已知函数.(I)若函数在上是减函数,求实数的取值范围;(II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由?(III)当时,证明:.
二次函数满足。(1)求函数的解析式;(2)在区间上,的图象恒在的图象上方,试确定实数的取值范围。
已知函数最小正周期为(1)求的单调递增区间(2)在中,角的对边分别是,满足,求函数的取值范围
已知命题:,命题:,命题为真,命题为假.求实数的取值范围.
三、解答题(本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤)17.已知向量, 的夹角为, 且, , 若, , 求(1)·;(2).