标准正态分布的概率密度函数是P(x)=·(x∈R).(1)求证:P(x)是偶函数;(2)求P(x)的最大值;(3)利用指数函数的性质说明P(x)的增减性.
将曲线绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
(本题满分16分)对于数列,若存在常数M>0,对任意,恒有,则称数列为数列. 求证:⑴设是数列的前n项和,若是数列,则也是数列. ⑵若数列都是数列,则也是数列.
(本题满分16分) 一束光线从点出发,经过直线上的一点D反射后,经过点. ⑴求以A,B为焦点且经过点D的椭圆C的方程; ⑵过点作直线交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围。
(本题满分15分) 在中,三边a,b,c满足:. ⑴探求的最长边; ⑵求的最大角.
(本题满分15分) 已知三次函数的最高次项系数为a,三个零点分别为. ⑴ 若方程有两个相等的实根,求a的值; ⑵若函数在区间内单调递减,求a的取值范围.