标准正态分布的概率密度函数是P(x)=·(x∈R).(1)求证:P(x)是偶函数;(2)求P(x)的最大值;(3)利用指数函数的性质说明P(x)的增减性.
已知各项均为正数的数列{an}的前n项和为Sn,满足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比数列{bn}的前三项.(1)求数列{an}及{bn}的通项公式;(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.
如图,已知椭圆C:+y2=1,A、B是四条直线x=±2,y=±1所围成的两个顶点. (1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;(2)若M、N是椭圆C上两上动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|.(1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;(2)求该城市旅游日收益的最小值(万元).
如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.
在△ABC中,角A,B,C的对边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积.