如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点.求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.
(文)已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的标准方程。
已知三边所在直线方程,,求边上的高所在的直线方程.
(本题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题. (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪一组获奖率较高?
将101111011(2)转化为十进制的数;
(本小题满分14分) 已知函数,,记。 (Ⅰ)判断的奇偶性,并证明; (Ⅱ)对任意,都存在,使得,.若,求实数的值; (Ⅲ)若对于一切恒成立,求实数的取值范围.