如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°.求证:MN⊥平面PCD.
(本小题满分12分) 已知椭圆的左、右焦点分别为,离心率, . (I)求椭圆的标准方程; (II)过点的直线与该椭圆交于两点,且,求直线的方程.
(本小题满分12分) 如图,在四棱锥中,底面是矩形,平面,,.于点,是中点. (1)用空间向量证明:AM⊥MC,平面⊥平面; (2)求直线与平面所成的角的正弦值; (3)求点到平面的距离.
(本小题满分12分) 设函数. (Ⅰ)若曲线在点处与直线相切,求的值; (Ⅱ)求函数的极值点与极值.
(本小题满分12分) 过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线,过其焦点F的直线交抛物线于、两点。过、作准线的垂线,垂足分别为、. (1)求出抛物线的通径,证明和都是定值,并求出这个定值; (2)证明: .
已知,点在函数的图象上,其中 (1)证明数列是等比数列; (2)设,求及数列的通项; (3)记,求数列的前项和。