已知关于的一元二次方程, ①, ②,求方程①和②的根都是整数的充要条件.
(本小题满分12分)某人向一目标射击,在处射击一次击中目标的概率为,击中目标得2分;在处射击一次击中目标的概率为,击中目标得1分.若他射击三次,第一次在处射击,后两次都在处射击,用表示他3次射击后得的总分,其分布列为:
⑴求及的数学期望;⑵求此人3次都选择在处向目标射击且得分高于2分的概率.
.(本小题满分12分)已知函数,.⑴求函数的最小正周期;⑵求函数的最小值,并求使取得最小值时的取值集合.
函数是定义在上的奇函数,且. (1)求实数,并确定函数的解析式;(2)用定义证明在上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值.(本小问不需说明理由)
、某商品在近30天内,每件的销售价格(元)与时间t(天)的函数关系是:,该商品的日销售量Q(件)与时间t(天)的函数关系是Q= -t+40 (0<t≤30,),求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?
(I)画出函数y =,的图象;(II)讨论当为何实数值时,方程在上有一个根、有两个根、没有根? 5