设椭圆+=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.(1)求直线l和椭圆的方程;(2)求证:点F1(-2,0)在以线段AB为直径的圆上.
已知集合A=,分别根据下列条件,求实数的取值范围(1) (2)
已知. (1)求函数的图像在处的切线方程; (2)设实数,求函数在上的最大值. (3)证明对一切,都有成立.
已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式; (2) 用数学归纳法证明所得的结论。
设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.
已知函数的图象过点P, 且在点M处的切线方程为. (1) 求函数的解析式; (2) 求函数的单调区间.