在数列中,,是给定的非零整数,.(1)若,,求;(2)证明:从中一定可以选取无穷多项组成两个不同的常数数列.
(本小题共9分) 已知函数f(x)=sin(2x+),x∈R. (Ⅰ)求函数f(x)的最小正周期; (Ⅱ)求函数f(x)在区间[-,]上的最大值和最小值。
(本小题共9分) 已知函数f(x)=。 (Ⅰ)求函数f(x)的定义域; (Ⅱ)判断函数f(x)的奇偶性,并证明; (Ⅲ)判断函数f(x)在定义域上的单调性,并用定义证明。
(本小题共9分) 已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R (Ⅰ)求A∪B,(C A)∩B; (Ⅱ)若A∩C≠,求a的取值范围。
已知在点(1,f(1))处的切线方程为。 (1)求f(x)的表达式; (2)若f(x)满足恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为的一个“上界函数”,求t的取值范围; (3)当m>0时讨论在区间(0,2)上极值点的个数。
设Sn为数列{an}为前n项和,对任意的都有(m为常数且m>0) (1)求证:{an}为等比数列; (2)设数列{an}的公比q=f(m),数列{bn}满足,求数列{bn}的通项公式; (3)在(2)的条件下,求数列的前n项和Tn。