设,是平面内一组基底,证明:当时,恒有.
(本小题满分12分)已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C相交于不同的两点A、B.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)设函数.(Ⅰ)求的最小值;(Ⅱ)若对恒成立,求实数的取值范围.
(本小题满分12分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点(不同于原点),点关于轴的对称点为,直线交轴于点.(Ⅰ)求椭圆的方程;(Ⅱ)求 的值.
本小题满分12分)已知函数f(x)=ax3+mx2-m2x+1(m<0)在点x=-m处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间.
本小题满分10分)求圆心在上,与轴相切,且被直线截得弦长为的圆的方程.