已知数列 { a n } , a n ≥ 0 , a 1 = 0 , a n + 1 2 + a n + 1 - 1 = a n 2 ( n ∈ N * ) .记: S n = a 1 + a 2 + . . . + a n , T n = 1 1 + a 1 + 1 ( 1 + a 1 ) ( 1 + a 2 ) + . . . + 1 ( 1 + a 1 ) ( 1 + a 2 ) . . . ( 1 + a n ) . 求证:当 n ∈ N + 时, 1. a n < a n + 1 ;  2. S n > n - 2 ; 3. T n < 3 .
在1,2,---,7这7个自然数中,任取个不同的数. (1)求这个数中至少有个是偶数的概率; (2)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.
选修4-4:坐标系与参数方程 已知曲线的参数方程为,曲线的极坐标方程为. (1)将曲线的参数方程化为普通方程; (2)曲线与曲线有无公共点?试说明理由.
选修4-2:矩阵与变换 若点A(-2,2)在矩阵对应变换的作用下得到的点为B(2,2),求矩阵.
已知数列中.为实常数. (Ⅰ)若,求数列的通项公式; (Ⅱ)若.①是否存在常数求出的值,若不存在,请说明理由; ②设 .证明:n≥2时, .
已知函数. (Ⅰ)若不等式的解集为,,求的取值范围; (Ⅱ)若为整数,,且函数在上恰有一个零点,求的值; (Ⅲ)在(Ⅱ)的条件下,若函数对任意的x∈,有恒成立,求实数的最小值.