已知数列 { a n } , a n ≥ 0 , a 1 = 0 , a n + 1 2 + a n + 1 - 1 = a n 2 ( n ∈ N * ) .记: S n = a 1 + a 2 + . . . + a n , T n = 1 1 + a 1 + 1 ( 1 + a 1 ) ( 1 + a 2 ) + . . . + 1 ( 1 + a 1 ) ( 1 + a 2 ) . . . ( 1 + a n ) . 求证:当 n ∈ N + 时, 1. a n < a n + 1 ;  2. S n > n - 2 ; 3. T n < 3 .
已知等比数列中,,求其第4项及前5项和.
已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点.(1)若,求点A的坐标;(2)若直线的倾斜角为,求线段AB的长.
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e= (1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.