已知数列 { a n } , a n ≥ 0 , a 1 = 0 , a n + 1 2 + a n + 1 - 1 = a n 2 ( n ∈ N * ) .记: S n = a 1 + a 2 + . . . + a n , T n = 1 1 + a 1 + 1 ( 1 + a 1 ) ( 1 + a 2 ) + . . . + 1 ( 1 + a 1 ) ( 1 + a 2 ) . . . ( 1 + a n ) . 求证:当 n ∈ N + 时, 1. a n < a n + 1 ;  2. S n > n - 2 ; 3. T n < 3 .
已知抛物线及点,直线斜率为1且不过点,与抛物线交于点A,B, (1) 求直线在轴上截距的取值范围; (2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.
分别求适合下列条件圆锥曲线的标准方程: (1)焦点为、且过点椭圆; (2)与双曲线有相同的渐近线,且过点的双曲线.
已知函数:,其中:,记函数满足条件:的事件为A,求事件A发生的概率。
为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
(1)求出表中所表示的数; (2)画出频率分布直方图;
已知, (1)讨论的单调区间; (2)若对任意的,且,有,求实数的取值范围.