已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y=x2的焦点,离心率等于. 求椭圆C的方程; 过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若=λ1,=λ2,求证λ1+λ2为定值.
设是公差不为零的等差数列,为其前项和,满足,(1)求数列的通项公式及前项和; (2)试求所有的正整数,使得为数列中的项。
如图,在直三棱柱中,、分别是、的中点,点在上,,求证:(1)EF∥平面ABC(2)平面平面
设向量 (1)若与垂直,求的值;(2)求的最大值;(3)若,求证:∥。
已知函数(Ⅰ)若,求函数的极小值;(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
如图,在矩形中,分别为四边的中点,且都在坐标轴上,设.(Ⅰ)求直线与的交点的轨迹的方程;(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.